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Abstract. We present a rigorous dynamical relation for aging phenomena—the aging relation—
for Ising spin glasses using the method of gauge transformation. The waiting-time dependence
of the autocorrelation function in the zero-field-cooling process is equivalent to that in the
field-quenching process. There is no aging on the Nishimori line; this provides arguments for
dynamical properties of the Griffiths phase and the mixed phase. The present method can be
applied to other complex systems with gauge symmetry such as theXY gauge glass.

Slow dynamics is an important concept in the study of complex systems, such as spin
glasses, structure glasses, polymers, superconductors, and neural networks. It is one of the
peculiar properties characterizing the spin-glass (SG) phase [1–3]. The aging phenomenon
[4] is a typical realization of slow dynamics, especially for the SG [5–8]. It was first
observed for a metallic SG material, CuMn, in a zero-field-cooling (ZFC) process [5]. The
relaxation of the isothermal remanent magnetization depends on the waiting time for which
the sample is kept at constant temperature prior to the application of the field. A similar
waiting-time dependence was observed for other metallic SG materials and short-range SG
materials (e.g. AgMn, AuFe, FexMn1−xTiO3, and CdCrx In1−xS4), and in measurements for
a field-cooling (FC) process [7, 8]. Experiments dictate that the aging in the ZFC process
is provided by the removal of a sufficiently strong magnetic field applied to SG materials
[6, 8]. This process is called field quenching (FQ), and is not equivalent to FC for which the
applied field is weaker. While the FQ and the FC are different, the dynamical equivalence
of ZFC and FQ is interesting if one contrasts it with the irreversibility observed in the ZFC
and the FC processes.

Several attempts have been made theoretically to explain the aging by means of
phenomenological arguments [9–11]. Cugliandolo and Kurchan [12] investigated the aging
for the Sherrington–Kirkpatrick (SK) model analytically. They examined the autocorrelation
function for the non-equilibrium process starting from a random state (ZFC fromT = ∞).
Rieger [13] investigated the aging in the 3D±J Ising model by Monte Carlo simulation.
He measured the waiting-time dependence of the autocorrelation function from the all-up
state (FQ; see below). In none of these studies has the equivalence of ZFC and FQ been
discussed theoretically, beyond the phenomenological arguments.

Since randomness and frustration make it difficult to examine SG systems analytically as
well as numerically, only few points have been definitely confirmed. The method of gauge
transformation [14–17] is a powerful technique for deriving exact results for the±J and
the Gaussian Ising spin glasses irrespective of the dimensionality. It provides the internal

0953-8984/97/5011171+07$19.50c© 1997 IOP Publishing Ltd 11171



11172 Y Ozeki

energy and an upper bound on the specific heat as non-singular functions of the temperature
on a special line in the randomness–temperature phase diagram. This line is called the
Nishimori line [14]. Furthermore, it provides a plausible argument for the absence of re-
entrant transitions from the FM phase to a non-FM one (the SG in 3d) [15]. The method
has been generalized to other random systems with various symmetries such as theXY

gauge glass [16]. Recently, it has been extended for treating dynamical systems [17]. Since
the method is formalized quite systematically, once a new result is obtained for a specific
system, it can be generalized to other gauge-symmetric systems.

Figure 1. Illustrations of two non-equilibrium processes, I and II. The correlation is measured
betweentw and t + tw.

In the present article, we derive a rigorous dynamical relation between two non-
equilibrium processes, which are shown in figure 1, relating to aging phenomena for Ising
SG models. The autocorrelation functions with a waiting timetw for these processes satisfy[〈Si(tw)Si(t + tw)〉FK]c =

[
〈Si(tw)Si(t + tw)〉KpK

]
c

(1)

whereK = J/kBT is the inverse temperature of the heat bath andKp gives the effective
(inverse) temperature characterizing the randomness (see later). Process I is related to the
ZFC. At initial time t = 0, the system is kept in the equilibrium state at a temperatureKp
with zero field; hereafter, we callK andKp ‘temperatures’ instead of ‘inverse temperatures’.
The temperature is immediately changed (usually quenched) and the system relaxes in a
heat bath at another temperatureK for t > 0. The average for dynamical ensembles in this
process is denoted by〈· · ·〉KpK . Process II is related to the FQ [6, 13]. The system starts
from the all-up stateF = (+,+, . . . ,+) at t = 0 and relaxes in the same heat bath as
in process I fort > 0; the average is denoted by〈· · ·〉FK . Since the all-up state provides
the strong-field limit, this represents the process with the field quenched from∞ to zero at
t = 0. Note that the FQ is not equivalent to the FC in which the applied field is weaker and
is quenched after the waiting time. In the following, we show the derivation of equation (1)
which we call theaging relationusing the method of gauge transformation, and discuss the
physical meaning and the applicability to other complex systems.

The Hamiltonian that we consider isH = J H̃(S;ω) = −J∑〈ij〉 ωijSiSj , whereSi
takes the values±1, andS = (S1, S2, . . . , SN) represents a configuration of allN spins. The
setω = (ω12, . . .) represents a configuration of allNB bonds, and the summation is taken
over all bonds; while we make no restrictions on the type or the dimension of the lattice,
one may suppose usual nearest-neighbour interactions on thed-dimensional hypercubic
lattice. For a particular bond configurationω, the equilibrium distribution is defined by
ρeq(S;K,ω) = exp

{ − KH̃(S;ω)}/Z(K,ω). The exchange interactionJij = Jωij is a
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Table 1. A summary of the variables and functions appearing in the bond distributions.NB is
the number of bonds.p is the concentration of+J bonds for the±J distribution, andJ0 is the
centre of the distribution for the Gaussian distribution with the variance of unity.

±J Gaussian

ωij ±1 Any real values
Kp

1
2 ln(p/(1− p)) J0

Y (Kp) (2 coshKp)NB exp
( 1

2NBKp
2
)

D(ω) 1 exp
(− 1

2

∑
〈ij〉 ωij 2

)

random variable. The average for bond randomness is denoted by [· · ·]c. The general form
of the bond distribution in a gauge-symmetric model [16, 17] is expressed as

P(ω;Kp) = D(ω)

Y (Kp)
exp

{−KpH̃(F ;ω)} (2)

whereF = (+,+, . . . ,+). The functionsωij , Kp, D(ω) and Y (Kp) are summarized
in table 1. We treat both the±J and the Gaussian bond distributions. In both types of
distribution,Kp controls the randomness;Kp = 0 and∞ correspond to the most random
case and the non-random case, respectively. The Nishimori line is located onK = Kp.

Since the Ising system has no intrinsic dynamics, we consider a Markov process for
each bond realization: the state distribution obeys the master equation [18], whose solution
is formally given byρt (S) =

∑
S′ 〈S|etΓ|S′〉 ρ0(S

′). The matrix element〈S|etΓ|S′〉 plays
the role of a Green’s function for a time intervalt . The matrixΓ is composed of non-
negative off-diagonal elements, and satisfies the detailed balance and the conservation of
the probability. We consider both the Metropoliset al [19] and the Glauber dynamics [20].
The detailed expressions forΓ for these two types of dynamics are given in reference [17].

The gauge transformations for functions ofS andω are defined by

Uσ: Si −→ Siσi (3)

Vσ: ωij −→ ωijσiσj (4)

whereσ = (σ1, σ2, . . . , σN) is an arbitrary state ofN Ising spins. The Hamiltonian is
invariant under the transformationUσVσ. Note that we use the terminology ‘gauge invariant’
only for functions of the setω invariant underVσ. Following references [16, 17], the bond
average of a gauge-invariant functionQ(ω) can be expressed as[

Q(ω)
]

c =
∑
ω

D(ω)Z(Kp,ω)

2NY (Kp)
Q(ω). (5)

To treat dynamical systems, another transformation forS′ is necessary:

U ′σ: S ′i −→ S ′iσi . (6)

We have shown the invariance of the time evolution:

UσU
′
σVσ〈S|etΓ|S′〉 = 〈S|etΓ|S′〉 (7)

for the Metropolis and the Glauber dynamics [17]. This leads us to the relations obtained
previously: [〈Si(t)〉FK]c =

[〈Si(0)Si(t)〉KpK ]c. (8)

Equation (8) is a generalization of the fluctuation-dissipation theorem in the region far from
equilibrium.
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We examine the aging by analysing the waiting-time dependence of non-equilibrium
autocorrelation functions [12, 13] for processes I and II instead of the remanent
magnetization, as in experiments. Since the autocorrelation function is a fundamental
quantity for representing the dynamical structure in the system, we believe that it detects a
typical aging feature if one exists. In the language of the master equation, the dependences
of the functions are expressed as

〈Si(tw)Si(t + tw)〉FK =
∑
S1S2

S2i〈S2|etΓ|S1〉 S1i〈S1|etwΓ|F 〉 (9)

〈Si(tw)Si(t + tw)〉KpK =
∑
S0S1S2

S2i〈S2|etΓ|S1〉 S1i〈S1|etwΓ|S0〉 ρeq(S0;Kp,ω). (10)

Using the same technique as was introduced in [17], one can easily see that〈Si(tw)Si(t +
tw)〉FK is transformed as

Vσ〈Si(tw)Si(t + tw)〉FK = 〈Si(tw)Si(t + tw)〉σK (11)

while 〈Si(tw)Si(t + tw)〉KpK is gauge invariant;〈· · ·〉σK expresses the average for the process
starting from a fixed stateσ. Note that the probability distribution (2) is transformed as

VσP(ω;Kp) = D(ω)Z(Kp,ω)

Y (Kp)
ρeq(σ;Kp,ω). (12)

Using equations (5), (11) and (12), we derive the relation (1) for any waiting timetw, any
time intervalt , any temperatureK and any degree of randomnessKp. We call it the ‘aging
relation’, since it relates aging phenomena in two distinct processes whatever waiting-time
dependence is essential for the aging. Equation (8) is a special case (tw = 0) of it.

Figure 2. A typical phase diagram of Ising spin glasses in theKp–K plane. The dashed
line (K = Kp) is the Nishimori line. A possible Griffiths phase and mixed phase (Mix.) are
indicated.

The aging relation contains parametersK andKp characterizing the relaxation fort > 0.
For each phase, one can examine the physical meaning of the relation by choosing(K,Kp)

appropriately. A typical phase diagram in the randomness–temperature plane for Ising spin
glasses is shown in figure 2; a possible Griffiths phase and mixed phase are indicated. Note
that the initial temperature of process I is always located onK = Kp. In the SG phase
whereKp indicates a high temperature (smallKp), process I is the ZFC process observed
in experiments. Therefore, the aging relation relates aging phenomena for the ZFC and
the FQ processes. The same relation was indicated by real experiments [6, 8], in which
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the waiting-time dependence of the remanent magnetization seemed equivalent in these
two processes. Since the aging relation reveals just the equivalence of the gauge-invariant
dynamical structure, the amplitude of the magnetization which is not gauge invariant does
not obey such a relation, while the dynamical behaviour itself may obey it as observed in
these experiments.

At a glance, the aging relation appears to express a trivial fact, since both initial states
are located in the PM phase and both systems relax into the SG phase. However, the
equivalence at any waiting time, which means the equivalence of the dynamical structure at
any stage of relaxation, is non-trivial. It is interesting to compare this equivalence with the
difference between the FC and the ZFC observed in experiments [1]. Further investigations
in this direction would be helpful as regards achieving an understanding of the dynamical
structure of the system.

Next, let us consider the aging relation onK = Kp (the Nishimori line), where the
temperature is kept constant at all times in process I. Then, the rhs of equation (1) becomes
the equilibrium autocorrelation function, which is independent of the waiting timetw:[〈Si(tw)Si(t + tw)〉FK]c =

[〈Si(0)Si(t)〉eq
K

]
c . (13)

〈· · ·〉eq
K denotes the dynamical average for the equilibrium process. Equation (13) is derived

from the fact that the equilibrium distributionρeq(K) is an eigenstate ofΓ with zero
eigenvalue. Therefore, the autocorrelation function in the FQ process is independent of
the waiting time, which suggests the absence of aging on the Nishimori line. Furthermore,
equation (13) provides efficient Monte Carlo calculations for equilibrium autocorrelation
functions; the equilibration can be omitted in the FQ process.

The aging has been considered an inherent property in the SG phase from experimental
[6–8] and theoretical [9–11, 13] viewpoints. Since the aging phenomenon is a typical
observation for the complex phase space for slow dynamics, it could occur in other complex
phases. In such a phase, the aging would also be inherent, which means that it occurs
throughout the whole of the phase when it is observed in some parts of the phase. It
has been pointed out that there is a dynamically singular phase called the Griffiths phase
[3, 21–24] between the critical temperature of the pure system and the phase boundary of
the low-temperature phase (the FM or the SG)—see figure 2. However, the region of the
Griffiths phase has not yet been determined definitely: figure 2 was proposed just from
pursuing an analogy with the dilute ferromagnet [26]. Therefore, as regards the Griffiths
phase, two cases can be considered to aid the understanding of the above result if the aging
is an inherent property. (a)There is no aging throughout the whole Griffiths phase, if the
Nishimori line intersects the Griffiths phase as in figure 2. (b)There is no Griffiths phase
at least around the Nishimori line.In the former case, even if a slow dynamics is observed
in the Griffiths phase, it is quite different from that in the SG phase [25]. The latter case
allows the existence of the Griffiths phase belowK = Kp. Another possibility is that (c)
the aging is not inherent at least in the Griffiths phase.This means that the aging occurs in
some parts of the Griffiths phase. Although it is not obvious which option is correct in the
present framework, the above result restricts the existence of the aging phenomenon and
the region of the Griffiths phase, and indicates that future investigations of them would be
fruitful.

Following the results for the SK model and from experiments [1], one should consider
the possibility of a mixed phase appearing between the FM and SG phases—see figure 2.
It is reasonable to consider that the aging occurs in a mixed phase, since the SG feature
in the mixed phase provides a typical slow dynamics which reveals the aging. Let us
consider the temperature below the multicritical point onK = Kp, where the spontaneous
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magnetization appears. In such a region, it is not clear that the FQ process is appropriate
for the observation of the aging, since the initial all-up state is not so different from the final
equilibrium state with broken symmetry. As seen above, the amplitude of the magnetization
is not important in the aging phenomenon. While the up–down symmetry is automatically
broken in the FQ process, the dynamical behaviour is equivalent to that in the equilibrium
(symmetric) process—see equation (13). Thus, we assume that the FQ process exhibits an
aging feature even in such a symmetry-broken region. If the aging is inherent in the mixed
phase, the relation (13) indicates that the Nishimori line does not enter the mixed phase.
This restricts the topology of the phase diagram, and is consistent with the results from the
SK model.

In summary, we have derived relation (1) for two non-equilibrium processes (the aging
relation). The aging phenomenon in the zero-field-cooling process is equivalent to that
in the field-quenching process. There is no aging on the Nishimori line. This provides
some restrictions on the Griffiths and the mixed phases. Furthermore, efficient Monte
Carlo calculations are possible for the equilibrium autocorrelation function on the Nishimori
line. Similar relations can be derived for other gauge-invariant quantities such as the SG
susceptibility. It can be generalized to other processes like the simulated annealing. The
present theory is applicable to various systems: any gauge-symmetric distribution of the
randomness instead of the Gaussian and the±J distributions, any dynamics which satisfies
equation (7) instead of the Glauber and the Metropolis ones, any dimensionality and lattice
(e.g. the SK model). It can be extended to other gauge-symmetric systems such as the neural
network system [27] and theXY gauge glass [16];H = −J∑〈ij〉 cos(φi−φj +Aij ). It has
been pointed out that granular systems of type-II superconductors in a magnetic field are
described by this model. There is a similar relation for such materials; since no ordering field
exists in superconducting systems, the all-up state is prepared from the ordered state in the
pure system at sufficiently low temperature. In this literature, the parameterKp controls the
magnetic field. It is quite interesting that such a non-trivial relation holds in various complex
systems irrespective of the details of the dynamics. Since unified treatments are generally
difficult for complex systems, the present result could shed light on future investigations of
them from the global viewpoint.
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